
1. Introduction
The ocean has absorbed ∼25% of the carbon dioxide released to the atmosphere by anthropogenic activities 
since the preindustrial (PI) era, leading to measurable changes in ocean chemistry (Friedlingstein et al., 2022). 
Increases in surface ocean carbon dioxide partial pressure (pCO2) cause associated increases in hydrogen ion 
concentration ([H +]) and declines in pH (−log10([H +])) and carbonate ion concentration ([CO3 2−]; Caldeira & 
Wickett, 2003; Feely et al., 2004, 2008). Such chemical changes due to anthropogenic carbon (Canth) accumula-
tion are collectively referred to as ocean acidification (OA) and have widespread implications for the health of 
marine organisms and ecosystems (Doney et al., 2020; Gattuso et al., 2015; Orr et al., 2005).

Two common metrics used to assess the progression and potential impact of OA on marine organisms are pH and 
the saturation state of calcium carbonate minerals, such as aragonite (ΩAr). Numerous prior works have shown 
that these metrics, and others, vary distinctly in their response to rising surface ocean pCO2 (Bates et al., 2014; Cai 
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et al., 2020; Feely et al., 2004, 2009; Jiang et al., 2019; Lauvset et al., 2015), due in part to differing sensitivities 
of each parameter to environmental conditions (Bittig et al., 2018; Egleston et al., 2010; Fassbender et al., 2017; 
Hagens & Middelburg, 2016; Riebesell et  al.,  2009). Fewer studies have considered how OA metrics evolve 
below the air-sea interface in response to carbon accumulation (Cai et al., 2011; Carter et al., 2019; Fassbender 
et al., 2021; Feely et al., 2018; Jiang et al., 2015; Lauvset et al., 2020; Resplandy et al., 2013; Ríos et al., 2015), 
and the findings suggest dissimilar carbonate system property perturbations with depth.

A less-emphasized OA metric of growing concern is the volume of water with in situ pCO2 exceeding 1,000 μatm 
(hypercapnia; McNeil & Sasse, 2016). Hypercapnia has been shown to negatively interfere with physiological 
and neurological functions in fishes and other marine organism by hindering organismal ability to excrete CO2 
during respiration and by disrupting internal acid-base regulation (Nilsson et al., 2012; Perry & Gilmour, 2006). 
Hypercapnic conditions can already be found in modern ocean environments, including upwelling regions like 
the California Current Large Marine Ecosystem (CCLME) in the Northeast Pacific Ocean (Feely et al., 2018). In 
this region, seasonal, wind-driven upwelling along the US West Coast transports subsurface waters, naturally low 
in pH, ΩAr, and dissolved oxygen (O2) and elevated in pCO2 due to prior organic matter remineralization, to the 
continental shelf environment (Feely et al., 2008; Gruber et al., 2012; Hauri et al., 2009, 2013). Subsurface remin-
eralization inherently links high pCO2 and low pH values to low O2 values, which can be intensified on the conti-
nental shelf by locally driven processes (Chan et al., 2017, 2019; Feely et al., 2016, 2018). During the upwelling 
season, certain coastal regions in the CCLME can experience severe hypoxic conditions ([O2] ≤ 60 μmol kg −1; 
Connolly et al., 2010; Grantham et al., 2004; Peterson et al., 2013). The potential expansion and intensification of 
hypercapnic zones in the CCLME with continued Canth accumulation poses a risk to organisms already exposed to 
spatially nonuniform stressors of acidification and hypoxia (Cheresh & Fiechter, 2020; Feely et al., 2018; McNeil 
& Sasse, 2016), in combination with ocean warming (Kroeker et al., 2013).

In this study, we evaluate and compare changes in OA metrics caused by Canth accumulation in the Central North 
Pacific Ocean (CNPO) and the CCLME since industrialization. Our study builds on the prior efforts of Feely 
et al. (2016) and Carter et al. (2019) to extend North Pacific Ocean Canth estimates to the US West Coast. We focus 
on the vertical structure of Canth-sensitivity for pH, ΩAr, pCO2, and [H +] and consider the impact of subsurface 
changes on the habitable zones of marine organisms in the CCLME. We then use output from a regional ocean 
model to examine the frequency, intensity, and duration at which the modern-day shelf ecosystem experiences 
conditions of hypercapnia.

2. Methods
2.1. Cruise Data and Derived Carbonate System Parameters

We use observational data from the 2015 CLIVAR/GO-SHIP P16 N Leg 2 cruise (Cross et al., 2017) in the CNPO 
and from the 2016 West Coast Ocean Acidification (WCOA2016) cruise (Alin et al., 2017; Figure 1) in the CCLME. 
Discrete measurements of the dissolved inorganic carbon (DIC), total alkalinity (TA), O2, and inorganic nutrients 
(phosphate and silicate) were collected from each station, in addition to vertical conductivity-temperature-depth 
profiles. P16 N stations between 22.5°N and 56°N and WCOA transects between 25°N and 54°N are used herein. 
DIC and TA concentrations were measured on board each cruise by coulometric titration (Johnson et al., 1993) 
and open-cell potentiometric titration (Millero et al., 1993), respectively, following standard procedures (Dickson 
et  al.,  2007). Routine analysis of Certified Reference Materials (Dickson et  al.,  2003) and replicate samples 
ensured DIC and TA uncertainties were better than ±0.1%. O2 concentration was determined by a modified 
Winkler titration (Carpenter, 1965) with an uncertainty of ±1.4 μmol kg −1.

Additional carbonate system parameters were calculated from DIC, TA, temperature, salinity, phosphate, 
and silicate using CO2SYSv1.1 for MATLAB (Lewis & Wallace,  1998; van Heuven et  al.,  2011) with the 
 dissociation constants for carbonic acid by Lueker et al. (2000), bisulfate ion by Dickson (1990), and total boron 
by Uppström (1974). Calculated parameters include in situ pH on the total scale, ΩAr, pCO2, [H +], and Revelle 
Factor (RF).

 19448007, 2022, 15, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
097835 by N

orthw
est Fisheries Science, W

iley O
nline L

ibrary on [24/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

ARROYO ET AL.

10.1029/2022GL097835

3 of 12

Figure 1. Changes (∆) caused by Canth (μmol kg −1; contours) accumulation along (a; map) ∼152°W in the Central North Pacific Ocean (left) and along Line 11 
(∼45°N) in the California Current Large Marine Ecosystem (right) for (b and c) pH, (d and e) ΩAr, (f and g) pCO2, and (h and i) [H +]. Panels (j and k) show modern 
Revelle Factors (RFs). Dashed white lines in the left panels mark the Central North Pacific Ocean data at 45°N shown in Figure 2.
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2.2. Estimating Canth in the CNPO and CCLME

Canth distributions were estimated in the CCLME using a variant on the approach described by Carter et al. (2019). 
This method utilizes ensembles of extended Multiple Linear Regressions from 14 repeat hydrographic sections 
in the Pacific Ocean between 1991 and 2017 to estimate decadal Canth accumulation along these various sections, 
including those in the CCLME. These estimates were then added to the 1994 Canth estimates determined from the 
ΔC* technique (Sabine et al., 2004), as regridded from the Global Ocean Data Analysis Project (GLODAP; Key 
et al., 2004), to yield modern Canth values. Finally, the Canth estimates are mapped temporally and spatially within 
the Pacific Ocean using regressions based on in situ temperature, salinity, and year. In contrast to the Carter 
et al. (2019) approach to map Canth across the entire Pacific basin, depth was not used as a regression predictor 
for the US West Coast Canth reconstructions due to seasonal coastal upwelling that links seawater properties more 
closely to density than to depth. This modification makes it more likely that surface Canth estimates will be lower 
than expected from complete air-sea equilibrium, particularly in waters with salinities and temperatures charac-
teristic of upwelling. We estimate an uncertainty of ∼8 μmol kg ₋1 for Canth in the CCLME (Text S1 in Supporting 
Information S1).

Canth estimates for the CNPO during the 2015 P16 N cruise were obtained directly from the gridded product by 
Carter et al. (2017) and linearly interpolated onto the discrete sampling positions. Gridded Canth values at 25 m 
were extrapolated to the surface. Unlike the approach used for the CCLME more broadly, this approach assumes 
surface Canth keeps up with the expectations from complete equilibration with the atmospheric changes. Note that 
the Canth estimated in the CCLME is offset from values estimated in the CNPO by 1 year due to different cruise 
years.

2.3. Determining the Impact of Canth Accumulation

Canth estimates were subtracted from modern, observed DIC concentrations to yield a PI DIC estimate. PI esti-
mates of pH, ΩAr, pCO2, and [H +] were computed from PI DIC and modern TA using CO2SYS as described 
above. The impacts of Canth accumulation on the carbonate system were evaluated by computing the change in pH, 
ΩAr, pCO2, and [H +] between the modern and PI values (e.g., ΔpH = pHmodern – pHPI). This method only accounts 
for the influence of Canth and does not consider physically or biologically induced changes in ocean biogeochem-
istry or changes in heat and freshwater fluxes since industrialization.

2.4. Tracking Hypercapnic Events in the CCLME With a Regional Ocean Model

Observations in the CCLME provide a snapshot of the spatial extent of hypercapnia (pCO2 ≥ 1,000 μatm). To 
estimate the modern spatiotemporal variability of hypercapnic events in the CCLME, we use a near real-time, 
4-dimensional variational data assimilative model of the CCLME implemented using the Region Ocean Modeling 
System (ROMS; Moore, Arango, Broquet, Edwards, et al., 2011; Moore, Arango, Broquet, Powell et al., 2011; 
Moore et al., 2013). The model domain extends from 30°N–48°N and 134°W–115.5°W (Figure 1b) and has a 
horizontal resolution of 1/10° with 42 terrain-following vertical layers (Figure S1a in Supporting Information S1; 
Veneziani et al., 2009). The model reproduced the observed density field along each CCLME Line with high fidelity 
(r ≥ 0.81; Figure S2 in Supporting Information S1) and was used to explore conditions over 10 simulation years 
(2011–2020).

The subsurface upper boundary for hypercapnic water in the observations is aligned with an average density of 
1027.5 ± 0.7 kg m −3 (Figure S3 in Supporting Information S1). The depth of this density surface was tracked 
daily over the 10 year model period to estimate the frequency, intensity, and duration of hypercapnic events at 
the 200 m isobath (roughly the continental shelf break; Figure S1; Text S2 in Supporting Information S1). If this 
density surface shoals onto the continental shelf during seasonal upwelling events, or if respiration processes 
increase pCO2 in the local subsurface waters, nearshore communities could be at risk for hypercapnia. Event 
frequency is defined as the number of days in a year that the hypercapnic density surface is shallower than 200 m. 
Event duration is defined as the number of consecutive days that the hypercapnic density surface is shallower 
than 200 m. Event intensity is defined as the local volume of hypercapnic water above 200 m. Events within 0.5° 
of latitude of the model boundaries were neglected to account for biases attributed to boundary conditions (Text 
S2 in Supporting Information S1).
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3. Results and Discussion
3.1. Anthropogenic Changes in CNPO and CCLME Carbonate Chemistry

Depth-resolved changes in carbonate system parameters caused by Canth accumulation in the CNPO are shown in 
Figure 1 (left). The highest Canth values of ∼58 ± 8 μmol kg −1 are found at the surface where Canth is absorbed, 
with peaks in the subtropics where waters are most efficient at absorbing Canth (Sabine et al., 2004). In the high 
latitudes, absorbed Canth gets transported to the ocean interior for storage, primarily in the midlatitude thermocline, 
with modern concentrations of ∼50 μmol kg −1 (Carter et al., 2019; Gruber et al., 2019; Khatiwala et al., 2013).

Canth accumulation in the ocean leads to the formation of carbonic acid, a weak acid that dissociates and is 
partially neutralized by reaction with [CO3 2−], producing [H +] and bicarbonate. The effects of these chemical 
processes manifest as reductions in pH and ΩAr, predominantly in the near-surface ocean where Canth values are 
greatest. As a result, the patterns of ∆pH and ∆ΩAr are similar to the distribution of Canth, with near-surface (upper 
30 m) values ranging from −0.125 to −0.095 and from −0.70 to −0.40, respectively, in the CNPO (Figures 1b 
and 1d). Similar upper ocean declines of pH and ΩAr due to Canth accumulation were found in the coastal CCLME 
(Figure 1; right). Surface ocean Canth estimates in the CCLME ranged from 45 to 75 μmol kg −1 in 2016, with the 
highest values observed south of 30°N (Figure S4 in Supporting Information S1). Lower surface Canth values were 
found adjacent to the coast near Cape Mendocino (40°N) and Pt. St. George (42°N), as seen in 2013 by Feely 
et al. (2016). This heterogeneity in surface Canth values, which is also found in the vertical Canth gradient, can be 
explained by seasonal, nonuniform coastal upwelling in the CCLME that lifts subsurface water carrying lower 
Canth to shallower depths along the coast. In the CCLME, near-surface (upper 30 m) values of ∆pH and ∆ΩAr 
ranged between −0.160 to −0.116 and −0.72 to −0.34, respectively, along Line 11 (Figures 1c and 1e), which is 
within the ranges found for the entire CCLME domain (∆pH: −0.167 to −0.095; ∆ΩAr: −0.74 to −0.29).

Unlike ∆ΩAr, the maximum change in pH is not always at the surface, but sometimes in the shallow subsurface 
in both the open (∼200 m; Carter et al., 2019) and coastal (∼100 m) oceans. This result agrees with findings of 
Lauvset et al. (2020) who performed a similar analysis for interior ∆pH and ∆ΩAr using the GLODAPv2 gridded 
climatology with Canth values for 2002 (Lauvset et al., 2016). A larger subsurface ∆pH reflects the enhanced 
sensitivity of pH to changes in Canth (i.e., DIC) at depth, where the ratio of DIC to TA is higher than that at the 
surface (see Figure 7 of Lauvset et al., 2020). However, these larger changes in shallow, subsurface pH are of 
very  similar magnitude to surface pH changes.

The vertical patterns of ∆pCO2 and ∆[H +] are distinct from those exhibited by ∆pH and ∆ΩAr (Figures 1f–1i). 
The largest changes in pCO2 and [H +] in the open ocean typically occur well below the surface (∼100–600 m) 
coincident with lower Canth (30–45 μmol kg −1), a feature that extends to the subsurface CCLME (∼240–400 m). 
The greatest ∆pCO2 and ∆[H +] along ∼152°W exceed 275 μatm and 4.5 nmol kg −1, respectively, in the CNPO 
(See Figure 4 of Fassbender et  al.,  2021) between a depth range of ∼100 and ∼200  m above 50°N. Lower 
maxima values of 175 μatm and 3.5 nmol kg −1 between ∼400 and ∼600 m are found in the northern mid-latitudes 
(20–40°N). In the CCLME along Line 11, increases in pCO2 and [H +] ranged between 70–200  μatm and 
1.3–3.5 nmol kg −1, respectively, within the upper 80 m where Canth ≥ 50 μmol kg −1 (excluding the station closest 
to shore). On this transect, maximal values for ∆pCO2 of ∼250 μatm and for ∆[H +] of 5.2 nmol kg −1 were found 
below this depth (∼240 m; excluding the station closest to shore). These observed subsurface pCO2 changes are 
larger than the atmospheric pCO2 increase caused by human activites (from ∼280 µatm to ∼420 µatm = ∼140 
µatm). In both the open and coastal oceans, the subsurface maximum in ∆[H +] is not coincident with a subsurface 
maximum in ∆pH. This is because ∆pH reflects a relative, rather than absolute, change in [H +] and thus depends 
on the initial [H +] conditions (Fassbender et al., 2021).

The reason that pCO2 and [H +] are more sensitive to smaller, subsurface Canth changes in the open and coastal 
North Pacific is related to the background chemistry of these waters. The ocean's ability to buffer the chemical 
changes imposed by Canth addition is often quantified using the Revelle sensitivity Factor (Broecker et al., 1979; 
Egleston et al., 2010; Fassbender et al., 2017; Middelburg et al., 2020; Revelle & Suess, 1957; Sabine et al., 2004). 
RF is defined as the ratio between a fractional change in pCO2 and a fractional change in DIC for a given 
carbonate system perturbation, assuming constant alkalinity:

RF =
𝜕𝜕𝜕𝜕CO2∕𝜕𝜕CO2

𝜕𝜕DIC∕DIC

 (1)
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A low RF value indicates a larger relative DIC change will occur for a given, relative pCO2 perturbation, and 
signifies a greater capacity of the ocean to absorb anthropogenic CO2 from the atmosphere. In contrast, waters 
with high RF values will be less efficient at absorbing anthropogenic atmospheric CO2. Under the same construct, 
this also means that waters with different RF values that experience the same relative DIC perturbation will 
exhibit different relative pCO2 changes (Fassbender et al., 2017, 2018).

Large gradients in RF have been identified across the global surface ocean (Bittig et  al.,  2018; Fassbender 
et al., 2017; Jiang et al., 2019; Sabine et al., 2004). Surface RFs in the CNPO are low in the warm tropics (∼10) 
and increase toward the cold poles (∼16), reflecting regional variability in carbon uptake efficiency (Figure 1j). 
RF values similarly increase with depth and toward the poles below the main thermocline, reaching a maxi-
mum of ∼19 below 1,000 m in the CNPO. These high subsurface RF values of 18 to 19 extend to the coastal 
CCLME (Figure 1k). High RF values are analogous to higher ratios of DIC to TA (Broecker et al., 1979; Egleston 
et al., 2010), as there is a relatively lower proportion of [CO3 2−] and higher proportion of aqueous CO2 among 
the species in the DIC pool. However, waters with similar RF values may exhibit dissimilar pCO2 responses 
to identical relative changes in DIC. This is because the magnitude of ∆pCO2 for a given increase in Canth also 
depends on the background pCO2 level, which can vary significantly depending on the aqueous CO2 fraction of 
DIC (Fassbender et al., 2017; Feely et al., 2018).

In the context of Canth accumulation in the CNPO, the largest absolute changes in pCO2 since industrialization are 
found between 200 and 600 m, despite lower Canth values (20–30 μmol kg −1) at these depths relative to the surface. 
Within this depth range, the CNPO has naturally elevated subsurface RF and pCO2 values due to accumulated 
byproducts of organic matter remineralization, reflected by substantial O2 utilization (Figure S5 in Supporting 
Information S1). Background RF and pCO2 values remain high below this depth range; however, the magnitude 
of ∆pCO2 decreases with depth in concert with declining Canth. Like the open CNPO, CCLME subsurface waters 
are naturally elevated in RF and pCO2 due to net respiration (Figure S6 in Supporting Information S1), and 
∆pCO2 values exhibit similar subsurface maxima. These findings suggest that opposing vertical gradients in the 
accumulation of Canth and respiration byproducts create a particular depth range in which the pCO2 sensitivity to 
DIC is elevated and the Canth concentration is moderate, causing a subsurface ∆pCO2 maximum in the open and 
coastal North Pacific. Since the [H +] and pCO2 are tightly linked parameters, the patterns of ∆[H +] are like those 
of ∆pCO2 (Figure 2).

The patterns of chemical change in OA metrics are notably coherent in the CCLME, with similar magnitudes 
of subsurface ∆pCO2 and ∆[H +] increases throughout the domain (Figures 2e and 2f). Compared to the open 
CNPO at 45°N, maxima in ∆pCO2 and ∆[H +] in the CCLME appear shallower (∼280 vs. ∼400 m) and larger in 
magnitude (∆pCO2: 270 vs. 220 μatm; ∆[H +]: 4.9 vs. 3.8 nmol kg −1; Figure 2). The average Canth values at the 
depths of maximal ∆pCO2 and ∆[H +] in the open ocean and CCLME are similar (30–34 μmol kg −1); however, 
the associated density surfaces carrying elevated background RF and pCO2 are shallower nearshore due to the 
natural ocean physics (Figure S6 in Supporting Information S1). Though regional differences between the depth 
and magnitude of ∆pCO2 and ∆[H +] maxima are largely the result of circulation and upwelling, local processes 
in the CCLME may intensify the subsurface chemical response. Enhanced local organic matter remineraliza-
tion caused by high levels of overlying primary production and a benthic boundary layer preventing export to 
depth can further increase subsurface pCO2 on the continental shelf (Fassbender et al., 2011), leading to more 
pronounced responses to subsurface Canth accumulation (Figure 3; Figure S7 in Supporting Information S1).

3.2. Expansion of the CCLME Hypercapnic Domain due to Canth Accumulation

The changes in seawater chemistry due to Canth accumulation have driven an increase in hypercapnic volume in 
the CNPO and CCLME. The minimum hypercapnic depth shoaled by 175 m (from 565 to 390 m) in the open 
ocean at 45°N, 152°W (Figure 2c) and by 185–300 m (from 435 to 200 m on average) in the CCLME (Figure 2g) 
compared to the PI mean minimum hypercapnic depths. This shoaling in the coastal region corresponds to a 
∼73% average increase (range: 58%–94%) in the hypercapnic volume above 750 m between 25°N and 55°N, 
creating a modern coastal environment where 64%–100% of the hypercapnic water above 750 m is simultane-
ously hypoxic (Figure 2h). This expansion in the CCLME presently leaves, on average, ∼27% of the water column 
above 750 m as suitable habitat for marine organisms susceptible to hypercapnia.
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By tracking the shallowest density layer on which hypercapnia was observed during WCOA2016 in model simu-
lations, we find that hypercapnic events at the 200  m isobath have occurred throughout most of the domain 
between 2011 and 2020 (Figure  4). On average, events were most frequent in the northern region (north of 
Cape Mendocino), where hypercapnic conditions were present up to 180 days per year (Figure 4a) and certain 
individual events lasted for 3–4 months (Figure 4b). During intense events, up to 40% of the local water column 
(120–200 m) experienced hypercapnic conditions (Figure 4c). In contrast, events were less frequent and of shorter 
duration in the southern CCLME (south of Point Conception), occurring less than 20 days per year and lasting up 
to 3 days, on average. However, these short-lived events can still be intense, with up to 25% of the water column 
being hypercapnic (150–200 m). Less intense (<10% of the water column) and relatively short-lived (<5 days) 
events occurred, on average, in the central region (between Cape Mendocino and Point Conception), where 
hypercapnia was experienced for up to 40 days per year.

The timing of the most intense hypercapnic events in the CCLME may be influenced by seasonal variations of 
the hypercapnic density surface depth in response to the alongshore pressure gradient, modulated by wind stress 
forcing (Figure 4e; Figures S10 to S14 in Supporting Information S1). Between 2011 and 2020, the month of 
maximum hypercapnia intensity was tracked at each model grid along the 200 m isobath (n = 1,112; Figure 4e). 
During winter and early spring (December–March), the hypercapnic density surface may reside above the 200 m 
isobath in certain locations, preconditioning the local water column with hypercapnic water at depth (Figures 
S10 to S12 in Supporting Information S1). During these months in the central and southern domains, intermit-
tent upwelling events induced by weak equatorward winds (or the relaxation of downwelling-favorable winds; 
Figures S13 and S14 in Supporting Information S1), generated the most intense hypercapnic events. In contrast, 
downwelling-favorable alongshore wind stress during the winter months in the northern domain may suppress 
hypercapnic events at the 200 m isobath. In this northern region, the most intense hypercapnic events occurred 

Figure 2. Profiles from the (top) upper 2000 m in the Central North Pacific Ocean at 45°N, 152°W and (bottom) upper 750 m in the California Current Large Marine 
Ecosystem (CCLME). The bold line in the lower panels indicates the average profile from all CCLME stations and shading represents ±1 standard deviation. The 
changes (Δ) due to Canth accumulation are shown for (a and e) pCO2 and dissolved inorganic carbon (DIC) and (b and f) [H +] and pH. (c and g). Modern (teal) and 
preindustrial (PI, black) pCO2 and corresponding depth ranges (dashed lines) for hypercapnia (pCO2 ≥ 1,000 μatm, vertical line). (d and h) Modern (pink) O2 and 
corresponding depth range (dashed lines) for hypoxia ([O2] ≤ 60 μmol kg −1, vertical line).
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in March–August, when winds shift predominantly equatorward along the coast and uplift subsurface isopycnals 
to shallower depths. The resulting alongshore pressure gradient in response to upwelling favorable conditions 
progressively deepened the isopycnal structure at the 200  m isobath from north to south in the central and 
southern domains, suppressing the occurrence of hypercapnic events at the 200 m isobath in spring and summer.

The metrics describing hypercapnic events in the CCLME only consider high pCO2 waters delivered from 
offshore, physical sources by determining the shallowest density layer on which hypercapnia is observed. Though 
this density typically was not found inshore of the 200 m isobath in the model simulations, hypercapnia was 
observed inshore of the 200 m isobath during WCOA2016 (Figure S8 in Supporting Information S1). Assum-
ing that the data-assimlative model simulations capture the physical dynamics of upwelling, this suggests that 
observed nearshore hypercapnia is further intensified by local organic matter respiration on the continental shelf 
that contributes to elevated subsurface pCO2 (Fassbender et al., 2011; Feely et al., 2018; Figure S7 in Supporting 
Information S1).

4. Conclusion
While many studies focus on changes in pH and ΩAr to assess the progression of OA, our findings illustrate that 
these and other OA metrics (i.e., pCO2 and [H +]) display different vertical sensitivities to Canth accumulation 
within the water column. The CNPO and CCLME are particularly chemically sensitive to anthropogenic pertur-
bations at depth, leading to the quantifiable intensification of subsurface pCO2 and [H +] levels. The enhanced 
sensitivities are due to the age of the waters at mid-depths and the associated accumulation of byproducts from 
organic matter remineralization, which elevate subsurface pCO2 and reduce the ocean buffering capacity. Subsur-
face pCO2 intensification is relevant to the CCLME where pervasive hypercapnia may be introduced from 
offshore sources and subsequently enhanced by local remineralization processes. We find that the minimum 

Figure 3. The change in pCO2 (∆pCO2) due to Canth accumulation in relationship to modern Revelle Factor (RF) and pCO2 in the (a) Central North Pacific Ocean 
between 25°N and 55°N, ∼152°W from P16 N and (b) the California Current Large Marine Ecosystem (CCLME) from WCOA2016.
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hypercapnic depth has shoaled by an average of 73% (to 200 m) in the upper 750 m of the CCLME since the PI 
era between 25°N and 50°N. Hypercapnia is predicted to increase in the CCLME (Feely et al., 2018) and glob-
ally (McNeil & Sasse, 2016) with continued Canth accumulation, and thus will become an increasingly important 
stressor to susceptible pelagic and benthic communities. Consideration of multiple OA metrics, including pCO2 
and [H +], supports a more complete characterization of the extent of subsurface anthropogenic chemical change.

Data Availability Statement
The observational data used in this study are publicly available through NOAA's National Centers for Envi-
ronmental Information for CLIVAR/GO-SHIP P16  N Leg 2 cruise in 2015 (NCEI Accession: 0163182; 
https://doi.org/10.3334/cdiac/otg.go_ship_p16n_2015) and WCOA 2016 (NCEI Accession: 0208230; 
https://doi.org/10.7289/v5v40shg). Near real-time model output for the California Current Large Marine 

Figure 4. Hypercapnic events at the 200 m isobath in the California Current Large Marine Ecosystem (CCLME) estimated from daily output of a data-assimilative 
regional ocean circulation model. Annual event metrics of (a) frequency, (b) maximum duration, and (c) maximum intensity were averaged between 2011 and 2020. 
Gray indicates no hypercapnic event occurred at the 200 m isobath between 2011 and 2020. (d) Map of the 200 m isobath (red) and CCLME region delineation 
following that by Checkley and Barth (2009): southern (30.5°N–34.5°N); central (34.5°N–40.3°N); and northern (40.3°N–47.5°N). (e) Percentage of total regional 
hypercapnic events between 2011 and 2020 that the maximum hypercapnic intensity occurred in a given month on the 200 m isobath.
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Ecosystem are available through the UCSC Ocean Modelling and Data Assimilation Group (https://oceanmod-
eling.ucsc.edu:8443/thredds/dodsC/ccsra_2016a_phys_agg_slevs/fmrc/CCSRA_2016a_Phys_ROMS_Sigma-
level_Aggregation_best.ncd.html). Anthropogenic carbon estimates from P16 N were accessed from Supporting 
Information S1 by Carter et al. (2017).
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Erratum
In the originally published version of this article, an incorrect reference, Dickson et al. (1990), was included in 
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citation in text have since been substituted for the incorrect ones, and the present version may be considered the 
authoritative version of record.
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